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METHODS Figure. Connectome-Based Predictive Modeling results for predicting Attention Network Task scores (a) and WASI-II (b) using the edge time series mean, entropy, and standard deviation. Y-axis represents Pearson’s R

between observed and predicted behavioral values. Blue dots show results of 100 iterations of 10-fold cross-validation using true data, and gray boxen plots show distribution of results from 1,000 iterations using randomized
data. Black line represents median accuracy for true models.
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Figure. Description of Connectome-Based Predictive Modeling (CPM) (figure adapted from Shen et al. 2017 & Gao et al. 2019) a) . - : : : - -
Description of CPM using a general linear model to compute behavioral predictions from one fMRI scan per subject. B) Description Future work will fOCUS on explorlng multivariate combinations Of these featu res, to test

of CPM using ridge regression to compute behavioral predictions using multiple representations of fMRI data per subject. Note whether the performance of static FC can be exceeded.
that shared steps are indicated by being placed in between the blue (panel a) and green (panel b) shaded backgrounds.)




